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Abstract Chlorophyll fluorescence and landscape-

level reflectance imagery were used to evaluate

spatial variations in stress in Myrica cerifera and Iva

frutescens during a severe drought and compared to

an extremely wet year. Measurements of relative

water content and the water band index (WBI970)

indicated that the water stress did not vary across

the island. In contrast, there were significant differ-

ences in tissue chlorides across sites for both

species. Using the physiological reflectance index

(PRI), we were able to detect salinity stress across

the landscape. For M. cerifera, PRI did not differ

between wet and dry years, while for I. frutescens,

there were differences in PRI during the 2 years,

possibly related to flooding during the wet year.

There was a positive relationship between PRI and

DF=F0m for M. cerifera (r2 = 0.79) and I. frutescens

(r2 = 0.72). The normalized difference vegetation

index (NDVI), the chlorophyll index (CI), and

WBI970 were higher during the wet summer for

M. cerifera, but varied little across the island. CI

and WBI970 were higher during 2004 for I. frutes-

cens, while there were no differences in NDVI

during the 2 years. PRI was not significantly related

to NDVI, suggesting that the indices are spatially

independent. These results suggest that PRI may be

used for early identification of salt stress that may

lead to changes in plant distributions at the

landscape level, as a result of rising sea level.

Comparsions between the two species indicate that

variations in PRI and other indices may be species

specific.

Keywords PRI � NDVI � WBI970 �
Chlorophyll fluorescence � Salinity �
Hyperspectral reflectance

Introduction

Salinity is considered to be the primary environmen-

tal factor influencing commun ity patterns in coastal

ecosystems (Oosting and Billings 1942; Ehrenfeld

1990; Stalter and Odum 1993). Drought, high irradi-

ance, and high temperatures are among many other

factors that limit plant growth in these environments

(Ehrenfeld 1990). These physical forces create

distinct zones of vegetation across the coastal landscape

relative to distance from the ocean. Environmental

boundaries are not as discrete as the zonation of

coastal plant communities; yet there is a relationship

between changes in species composition and gradient

for abiotic stressors (Crawford 1989). Young et al.

(1994) demonstrated that spatial and seasonal
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variations in groundwater salinity and soil chlorides

are partly responsible for the spatial distribution of

woody vegetation on barrier islands. Shifts in plant

distributions due to salinity in coastal areas are likely

to occur with the predicted effects of climate change,

most notably sea-level rise and increased storm

intensity and frequency (Gregory and Oerlemans

1998; Zhang et al. 2000).

Much effort has been devoted to identifying stress

in plants before visible signs are observed. Changes

in visible reflectance, shifts in the reflectance curve

red edge, and differences in various indices have

correlated strongly with plant stress (Carter 1993;

Carter and Young 1993; Blackburn 2007). In recent

years, attention has been focused on measurements of

chlorophyll fluorescence as a means of early stress

detection. However, research into light-adapted mea-

surements of fluorescence is imperative, as dark-

adaptation is not currently feasible at scales beyond

the leaf level. Chlorophyll fluorescence measure-

ments are ideal because they are non-destructive and

linked to physiological functioning of plants (Zarco-

Tejada et al. 2000). One drawback to fluorescence is

that most instruments are not capable of making

measurements from a distance because of the weak

signal (less than 2% of total reflected visible light).

Thus, finding the fluorescence signal in reflectance

data has been a focus of more recent research efforts

and would enable rapid large-scale detection of plant

physiological status (Zarco-Tejada et al. 2003; Evain

et al. 2004; Dobrowski et al. 2005).

All environmental stresses that lower the photo-

synthetic rate of a plant will increase the need for

energy dissipation of excess, absorbed light (Dem-

mig-Adams and Adams 1992). One mechanism for

the dissipation of excess energy involves changes in

xanthophyll cycle pigments. Under excess light,

violaxanthin is converted into zeaxanthin. Increases

in zeaxanthin levels are correlated to increases in

energy dissipation, which can be measured by

chlorophyll fluorescence (Demmig-Adams and

Adams 1996). The increased levels of zeaxanthin

can also be monitored by changes in reflectance at

531 nm using the physiological reflectance index

(PRI). PRI has been successfully used to indicate

physiological changes from both acute (Evain et al.

2004; Dobrowski et al. 2005; Naumann et al. 2008a)

and chronic stress (Filella and Peñuelas 1999; Asner

et al. 2004; Filella et al. 2004; Peñuelas et al. 2004).

It is also a useful index for remote sensing of water

stress in agricultural and natural systems (Peñuelas

et al. 1998; Suárez et al. 2008), yet investigations

into the application of PRI for detection of salinity

stress are limited (Thorhaug et al. 2006; Naumann

et al. 2008a).

Applicability of PRI at the landscape (defined here

as across a scene) and larger scales is complicated

due to the heterogeneous composition of the land-

scape and other errors (Peñuelas et al. 1997).

Recently, researchers have demonstrated the success

of using airborne imagery for calculating PRI in

various systems (Asner et al. 2004; Fuentes et al.

2006; Suárez et al. 2008; Naumann et al. 2008b). The

objective of our study was to identify spatial varia-

tions in plant stress in the dominant woody vegetation

on a Virginia barrier island, using a combination of

field measurements and hyperspectral airborne reflec-

tance. Specific goals were to (1) identify areas of

stress using field measurements of chlorophyll fluo-

rescence, (2) determine the cause of stress, (3) link

field measurements to hyperspectral imagery, and (4)

use hyperspectral imagery and indices to identify

stress across the landscape.

Materials and methods

Study sites

The field study was conducted on September 13,

2007 on the North end of Hog Island (37�400 N;

75�400 W), a barrier island located on the Eastern

Shore of Virginia (Fig. 1). The Oceanside, northern

end of the island, has been accreting approximately

5 m/year for 140 years (Hayden et al. 1991), result-

ing in a parallel series of dunes and swales. We

conducted our study across the northern end of the

island, focusing on two shrubs: Myrica cerifera L.

(Myricaceae), an evergreen, nitrogen-fixing, salt

sensitive shrub, which dominates the mesic swales

and Iva frutescens L. (Asteraceae), a salt-succulent

shrub most common along the edge of salt marshes

(Ehrenfeld 1990; Young et al. 1994). Five M. cerif-

era and two I. frutescens sites were used in our study

with five sampling locations at each site (Fig. 2).

Study sites were chosen based on exposure to

salinity. The M. cerifera Oceanside site is *200 m

from the Atlantic Ocean and the most exposed to salt
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spray. The Backside site is the leeward, protected

side of the same thicket. The Young site is *30 m

from the Backside site and is ocean facing. The Dune

site is located in the middle of the island adjacent to a

dune and samples were collected from the ocean

facing side. The Mid-island site is in the middle of

the island adjacent to a freshwater pond, and is

generally the most freshwater flooded site. Samples

taken from the Mid-island site faced away from the

ocean. The two I. frutescens sites are located on the

bayside of the island. The Bayside site is located at

the edge of the saltwater marsh, while the Path site

occurs at a higher elevation along a dry path and is

adjacent to a hypersaline saltpan (Fig. 2).

Field measurements

Monthly variations in precipitation during 2004 and

2007 were obtained from a meteorological station on

Hog Island (Krovetz et al. 2007). Light-adapted

chlorophyll fluorescence was measured at each site

(n = 50) using a pulse amplitude modulated leaf

fluorometer (PAM-2000, Walz, Effeltrich, Germany).

The relationship between maximal fluorescence in a

light-adapted leaf after a saturating pulse of light

(F0m) and steady-state fluorescence prior to any

saturating pulse (Fs) was used to estimate the

effective quantum yield of photosystem II:

DF=F0m ¼ F0m � Fs

� ��
F0m

Five leaves from each sampling location were clipped

at the stem and kept at 100% humidity. Relative

water content was measured as

RWC %ð Þ ¼ FW� DWð Þ= SFW� DWð Þ � 100

where FW is fresh weight, DW is dry weight, and

SFW is saturated fresh weight of the leaves after re-

hydrating samples for 24 h (Turner 1981). Tissue

chlorides were quantified at each sampling location

(n = 5). Leaf samples were oven-dried at 80�C for

72 h and then ground in a fine mesh mill. For each

sample, 0.5 g of material was placed in a tube with 40

ml of deionized water. Samples were placed in a

boiling water bath for 2 h, cooled, and then filtered

into 100-ml volumetric flasks. To each sample, 2 ml

of 5 M NaNO3 was added as an ionic equalizer, and

then samples were brought to volume with deionized

water (Young et al. 1994). Chloride levels were

determined using a chloride electrode (model 9617b,

Orion, Boston, MA).

Airborne image acquisition

The airborne hyperspectral mission was flown con-

current with the field measurements at Hog Island on

September 13, 2007. On the day of the flight, air

Fig. 1 Location map for

study site at Hog Island,

Virginia
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temperature was 29�C with relative humidity of 45%

and 2076 lmol m-2 s-1 PPFD at solar noon. Hyper-

spectral data (3 nm resolution) were provided by the

SpectIR using the ProSpecTIR VIS hyperspectral

imaging spectrometer (SpectIR Corp.). Hyperspectral

imagery covering 450–2,450 nm was collected under

cloud-free conditions at 1,700 m (AGL), providing a

dataset representing 2 m/pixel on the ground and a

final spectral cube 356 bands deep. These data

products were post-processed to correct for geometric

and radiometric (e.g., bi-directional) effects. Ground

reflectance radiometry was used to calibrate the data

based on target endmembers collected in-scene with

the ASD FieldSpec Pro Full Range reflectance

radiometer (Analytical Spectral Devices, Inc.,

Boulder, CO). This effectively placed the scene into

reflectance units and helped to negate any atmo-

spheric effects. Calibration was performed using the

empirical line calibration method within ENVI (RSI,

Inc.). Points were selected from each sampling

location based on GPS measurements and the corre-

sponding spectra were extracted. The extraction of

pixels with 2 m resolution enabled the calculation of

indices without any shadowing effects. Numerous

reflectance indices were calculated to elucidate

spatial variation across the island. Only the relevant

indices are included in this aarticle and are listed in

Table 1.

The summer of 2007 was very dry. In order to

understand the relationships in spectral indices across

the island, we also acquired imagery of Hog Island

during an unusually wet year. The airborne hyper-

spectral mission was flown on August 24, 2004 using

the Portable Hyperspectral Imager for Low-Light

Spectroscopy (PHILLS) (Davis et al. 2002). On the

day of the flight, air temperature was 29�C with

relative humidity of 71% and 2018 lmol m-2 s-1

PPFD at solar noon. Hyperspectral imagery covering

384–1,000 nm was collected at a spatial resolution of

3 m/pixel. These data products were post-processed

to correct for geometric and radiometric (e.g., bi-

directional) effects. Ground reflectance radiometry

was also used to calibrate the data based on target

endmembers collected in-scene with a handheld

spectroradiometer (Analytical Spectral Devices,

Inc., Boulder, CO). Transformation of the PHILLS

data was accomplished using the SpectIR data as a

reference to normalize the bands. Extraction of pixels

and subsequent calculation of indices at specific

wavelengths from the 2004 PHILLS data were

normalized to the reference 2007 SpectIr data using

a histogram matching procedure following Jensen

(2005). The equation for this procedure is

DNnew ¼ DNt �MEANt=STDtð Þ STDr þMEANr

where DNnew denotes the new spectral band(s)

(PHILLS), DNt denotes the digital number values

for the image to be transformed (PHILLS band),

MEANt denotes the statistical mean of the image to

be transformed (PHILLS band), STDt denotes the

standard deviation of the image to be transformed

(PHILLS band), STDr denotes the standard deviation

of the reference image (SpectIR band), and MEANr

denotes the statistical mean of the image to be

Fig. 2 SpectIR hyperspectral image of sites at Hog Island,

Virginia. The following letters denote M. cerifera thickets used

in the study: O, Oceanside; B, Backside; Y, Young; D, Dune;

M, Mid-island. The I. frutescens sites in the study are: IB,

Bayside; IP, Path
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transformed (SpectIR band). Given the close acqui-

sition times, spectral, spatial, radiometric and ground

features for each airborne mission, this effectively

normalized each image set for comparative stress

calculations based upon reflectance signatures. Rep-

resentative reflectance spectra of a Mid-island site

obtained from the flights are shown in Fig. 3.

Statistical analyses

Analysis of variance (ANOVA) was used to test for

variations in sites of the each species for the

following measurements: chlorophyll fluorescence,

RWC, and tissue chlorides (Zar 1999). Significant

differences among sites were identified with Tukey

tests (a = 0.05). Two-way ANOVA was used to test

for significant interactions between site and year for

reflectance indices. In cases where a significant

interaction occurred, one-way ANOVAs were used

to test for variations among sites within a year and to

test for variations between years at a specific site.

Variations in reflectance indices were related to

variations in chlorophyll fluorescence, RWC, and

tissue chlorides using linear regressions.

Results

Precipitation for June through September of 2004 was

52% above the 30-year average (388 mm). In com-

parison, 2007 was unusually dry and characterized by

a persistent drought; precipitation for June through

September was 39% below the 30-year average

(Fig. 4). In 2004, the longest period without rainfall

was 11 days in June, whereas in 2007 only two rain

events [5 mm occurred after July 11 and no precip-

itation occurred after mid-August (Fig. 4).

In 2007, relative water content for M. cerifera

averaged 96 ± 1% at the Mid-island site and was

significantly higher compared to other island sites

(F = 16.76, P \ 0.001). Average RWC ranged from

85 ± 1% to 78 ± 0% at the other M. cerifera sites

(Fig. 5). RWC did not significantly differ between

Table 1 Vegetation indices used in our statistical analyses

Reflectance index Formula Reference

Physiological reflectance index (PRI) (R531 - R570)/(R531 + R570) (Gamon et al. 1992)

Normalized difference vegetation index (NDVI) (R801 - R670)/(R801 + R670) (Daughtry et al. 2000)

Chlorophyll index (CI) (R750 - R705)/(R750 + R705) (Gitelson and Merzlyak 1996)

Water band index (WBI970) R970/R900 (Peñuelas et al. 1993)
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Fig. 3 Representative reflectance spectra from the 2004

PHILLS and 2007 ProSpecTIR VIS hyperspectral flights
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I. frutescens sites (F = 0.26, P = 0.621) and aver-

aged 73 ± 2% (Fig. 5). Total chlorides present in

leaves were higher for the salt succulent plant,

I. frutescens compared to M. cerifera (Fig. 5).

Among M. cerifera sites, the Oceanside thicket had

the highest chlorides and was significantly different

from all other sites (F = 261.72, P \ 0.001). The

Young and Dune sites were similar in tissue chloride

concentrations, as were the Mid-island and Backside

sites (Fig. 5). Tissue chlorides were significantly

lower for I. frutescens at the Bayside site compared

to the Path site (F = 42.43, P \ 0.001; Fig. 5).

DF=F0m significantly differed across the island in

M. cerifera thickets (F = 19.29, P \ 0.001). The

Dune site had the lowest DF=F0m values

(0.48 ± 0.03) and was significantly lower than all

other sites (Fig. 6). Highest DF=F0m values were

found at the Backside (0.70 ± 0.03) and Mid-island

sites (0.68 ± 0.02). There was a significant differ-

ence in DF=F0m of I. frutescens between the Bayside

(0.73 ± 0.01) and Path sites (0.70 ± 0.02; F = 9.89,

P = 0.014; Fig. 6).

There was no significant interaction in PRI

between M. cerifera sites and year (F = 0.73,

P = 0.575). PRI was significantly different among

M. cerifera sites (F = 20.86, P \ 0.001) and varied

from -0.02 to 0.03. Post hoc comparisons revealed

that the Dune site had the lowest values of PRI. The

Young and Oceanside sites had midline values of

PRI, and were significantly lower than the Backside

and Mid-island sites (Fig. 6). There was no signifi-

cant difference between the 2 years (F = 0.26,

P = 0.613). Values of PRI were higher in I. frutes-

cens compared to M. cerifera, ranging from 0.01 to

0.02. There was a significant interaction between site

and year for I. frutescens (F = 55.84, P \ 0 .01). In

2007, PRI was significantly higher at the Bayside site

(F = 9.89, P = 0.014), whereas PRI was signifi-

cantly lower at the Bayside site in 2004 (F = 30.40,

P \ 0.001; Fig. 6). There was a significant difference

between the 2 years at the Bayside site (F = 122.24,

P \ 0.01), but not at the Path site (F = 4.33,

P = 0.070).

There was a significant interaction in normalized

difference vegetation index (NDVI) between M. cer-

ifera sites and year (F = 2.77, P = 0.040; Fig. 6).

There were significant differences among sites with

the highest values of NDVI at the Backside site

(F = 5.46, P = 0.002), and there was a significant

difference between years (F = 227.24, P \ 0.001).

In 2007, NDVI values ranged from 0.73 to 0.77

across sites, while values were much higher in 2004,

ranging from 0.82 to 0.94. NDVI values at the

I. frutescens sites were much lower compared to

M. cerifera and ranged from 0.46 to 0.57. There was

no significant interaction between year and site for

I. frutescens (F = 0.94, P = 0.346; Fig. 6), and there

were no significant differences between years

(F = 2.75, P = 0.117) and sites (F = 3.14,

P = 0.095).

PRI was positively related to DF=F0m (r2 = 0.79,

P \ 0.001; Fig. 7) at M. cerifera sites. PRI decreased

from 0.014 to -0.019, while DF=F0m decreased from

0.78 to 0.40 with highest DF=F0m recorded at the

Backside site. For I. frutescens, PRI was positively

related to DF=F0m (r2 = 0.72, P = 0.002; Fig. 7).

PRI was not related to RWC in M. cerifera

(r2 = 0.09, P = 0.135; Fig. 8) or I. frutescens

(r2 = 0.00, P = 0.994; Fig. 8). There were no sig-

nificant relationships between DF=F0m and RWC in

M. cerifera or I. frutescens (r2 = 0.09, P = 0.151;
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I. frutescens sites during 2007. Values represent means ± 1
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r2 = 0.02, P = 0.701, respectively). There was a

weak but significant negative relationship between

PRI and tissue chlorides in M. cerifera (r2 = 0.27,

P = 0.008; Fig. 9). The Oceanside site had extre-

mely high tissue chlorides compared to the other

sites, which is likely influenced by salt spray on the

leaves. When this site was removed from the

regression, a much stronger relationship between

PRI and tissue chlorides emerged (r2 = 0.81,

P \ 0.001; Fig. 9). There was also a negative rela-

tionship between PRI and tissue chlorides for

I. frutescens (r2 = 0.71, P = 0.002; Fig. 9). A sim-

ilar pattern was seen between DF=F0m and tissue

chlorides. With all M. cerifera sites included, there

was no significant relationship (r2 = 0.11,

P = 0.100), but once the Oceanside site was

removed, a strong relationship was seen (r2 = 0.72,

P \ 0.001). For I. frutescens, a significant relation-

ship was also seen between DF=F0m and tissue

chlorides (r2 = 0.45, P = 0.033).

In 2007, PRI was not significantly related to NDVI

at the M. cerifera sites (r2 = 0.04, P = 0.637;

Fig. 10), suggesting that PRI is not tracking changes

in NDVI and the indices are spatially independent.

For I. frutescens, PRI was related to NDVI, but this

relationship was not considered significant at

a = 0.05 level (r2 = 0.38, P = 0.059; Fig. 10).

Similar trends were seen in 2004 for PRI and NDVI

among M. cerifera sites (r2 = 0.00, P = 0.707) and

I. frutescens sites (r2 = 0.00, P = 0.938; Fig. 10).

There were no significant relationships between

chlorophyll index (CI) and DF=F0m among M. cerif-

era sites (r2 = 0.05, P = 0.292). There was a

significant interaction in CI between site and year

for M. cerifera (F = 4.31, P = 0.005). CI was sig-

nificantly higher in 2004 (F = 92.80, P \ 0.001).

There were no differences among sites in 2004

(F = 0.75, P = 0.568). In 2007, CI was significantly

lower at the Mid-island site (F = 8.97, P \ 0.001).

For I. frutescens, CI exhibited a relationship with

DF=F0m but was not significant (r2 = 0.35,

P = 0.071). There was no interaction between site

and year for I. frutescens (F = 0.39, P = 0.539). CI

was significantly higher in 2004 (F = 64.18,
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P \ 0.001), but there were no differences between

sites (F = 0.45, P = 0.514). Water band index

(WBI970) was not related to DF=F0m at the M. cerifera

sites or the I. frutescens sites (r2 = 0.08, P = 0.183;

r2 = 0.00, P = 0.906, respectively) in 2007. Among

M. cerifera sites, there was no interaction between

site and year (F = 1.95, P = 0.121). WBI970 was

significantly higher during 2004 (F = 41.32,

P \ 0.001) and the Mid-island site was significantly

higher than other sites (F = 5.43, P \ 0.001). There

was a marginally significant interaction between year

and site for I. frutescens (F = 4.26, P = 0.056).

WBI970 was higher during 2004 (F = 277.55,

P \ 0.001) and was higher at the Bayside

(F = 35.64, P = \ 0.001). For M. cerifera, WBI970

was significantly related to RWC in 2007 (r2 = 0.69,

P \ 0.001; Fig. 11), but there was no relationship

between WBI970 and RWC for I. frutescens

(r2 = 0.00, P = 0.910; Fig. 11).

Discussion

The results of our field study show a strong link

between DF=F0m and PRI for both M. cerifera and

I. frutescens on a Virginia barrier island. These

findings are similar to studies focused on water

stress, which have shown positive relationships

between PRI and fluorescence (Peñuelas et al. 1998;

Winkel et al. 2002). During the same 2007 field

season, Naumann et al. (2008b) showed that M. cer-

ifera experienced a drought response, as seen in

decreases in stomatal conductance, photosynthesis,

and RWC relative to earlier in the season. Chloro-

phyll fluorescence did not respond to drought, but

rather to differences in salinity. In this study the cause

of stress is attributed to variations in salinity rather

than drought based on tissue chlorides and RWC, as

well as a comparison in reflectance data from the dry

summer of 2007 with a relatively wet summer in

2004. Salinity affects plant water status and produces

a suite of effects similar to those caused by drought in

newly developed transpiring leaves (Munns 2002).

-0.02

-0.01

0.00

0.01

0.02

0.03

∆F/F'm

0.3

P
R

I

-0.03

-0.02

-0.01

0.00

0.01

0.02

b

a

r 2 = 0.79 

r 2 = 0.72 

0.4 0.5 0.6 0.7 0.8

Fig. 7 Relationship between PRI and DF=F0m for M. cerifera
sites (a) and I. frutescens sites (b), where d, Oceanside; s,

Backside; ., Young, 4, Dune; and j, Mid-island M. cerifera
sites, and , Bayside and , Path I. frutescens sites

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

RWC

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

P
R

I
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

a

b

r2 = 0.09 

r2 = 0.00 

Fig. 8 Relationship between PRI and RWC during 2007 for

M. cerifera site (a) and I. frutescens (b). Symbols are defined

in Fig. 5

292 Plant Ecol (2009) 202:285–297

123



Previous research has shown declines in chlorophyll

fluorescence and PRI to be indicators of salinity stress

in Myrica cerifera prior to visible signs of stress in

both laboratory (Naumann et al. 2007) and field

experiments (Naumann et al. 2008b).

PRI has been correlated to plant water status under

drought conditions (Suárez et al. 2008). In our study,

spatial variations in PRI and DF=F0m were not linked

to variations in water content during the summer

drought of 2007, but did relate to tissue chlorides

across the island. This is further supported by the

similar pattern of spatial variation in PRI for M. cer-

ifera during the unusually wet summer of 2004.

Across the coastal landscape, M. cerifera is restricted

to well-defined mesic swales due to sensitivity to

moisture stress (Young 1992). However, distance

from the shoreline and distance to the water table

affect soil moisture content at a given landscape

position, and therefore every thicket differs consid-

erably in soil water availability (Shao et al. 1995).

Thus, in an extremely wet summer, we would expect

to see less variation in PRI across the landscape if the

spatial variations seen in 2007 were due to microsite

differences in drought stress. NDVI values were

higher in M. cerifera thickets during the wet summer

of 2004 relative to 2007, in agreement with values of

annual shoot growth across the island from these

years (Donald R. Young unpublished data).

CI and WBI970 were also higher in 2004, consistent

with expectations for a wet year. In 2007, CI was lower

at the Mid-island site, but aside from this, there were no

differences across sites, suggesting that differences in

chlorophyll content are not responsible for changes in

DF=F0m or PRI across the island. Although there were

no significant differences in WBI970 across the island,

it did exhibit a good relationship with RWC for

M. cerifera, suggesting that WBI970 is a good index for

monitoring the water status in this species. There was

no relationship between WBI970 and RWC for

I. frutescens, but WBI970 was higher at the Bayside

site. Because this site is frequently flooded, these plants

are likely to have access to more water than the Path

site, resulting in a higher WBI970, while microsite

differences in salinity may influence the RWC of each

plant (Hacker and Bertness 1995).

Differences in PRI, DF=F0m, and tissue chlorides

from the Oceanside and Backside of the same thicket,

which are separated by a distance of no more than

50 m, are of interest. The Backside site did not differ

significantly from the Mid-island site (*900 m

inland) in terms of PRI, fluorescence, and tissue

chlorides. Aspect and distance from the ocean are

very important in determining the effect of salinity on

plants and creating spatial variation in salinity stress

across the landscape (Ehrenfeld 1990; Young et al.

1995). Sea spray appears to be a cause of salinity at

least among some of the sites. For example, the

Backside site, while only 250 m away from the

shoreline, is the protected, leeside of the thicket and

thus does not receive as much sea spray as sites that
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are ocean facing. The Oceanside site had extremely

high values for tissue chlorides relative to other sites;

yet the Dune site had the lowest values of PRI and

DF=F0m. The high values of chlorides at the Ocean-

side site may be influenced not only by those in the

tissues, but also by chlorides from sea spray impact to

the surface of the leaf, which is likely to be

pronounced in an extremely dry season.

Sea spray is difficult to quantify both in space and

time, especially on a remote island where access is

limited (Ehrenfeld 1990). Based on our chloride data

and the lack of coastal storms during the study period,

the accumulations of tissue chlorides in this study are

most likely due to sea spray. Storm overwash can also

lead to increase in salinity levels, but previous work

showed that groundwater salinity remained relatively

low (less than 3 g l-1 on the bayside and lower

inland) in M. cerifera thickets across the island even

following a major northeastern storm (Young et al.

1991). The Backside site had lower tissue chlorides

compared to the Young site, which faces the ocean

but is further inland, again suggesting influence from

sea spray. The Dune site, while further inland, is a

very dry site and may be influenced by other factors,

such as depth to the water table, which could cause

the effects of salinity to be greater. More study is

needed to assess the exact cause of stress at this site.

The Mid-island site, which is the most protected,

appeared to be the least stressed site from field

measurements and reflectance data.

For the halophyte I. frutescens, tissue chlorides

were much higher and RWC values were
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considerably lower compared to the salt and moisture

sensitive plant M. cerifera. Measurements of DF=F0m
and PRI were also higher in I. frutescens during

2007. We did not expect to see such low values of

PRI in 2004. The higher 2007 PRI values could be

due to low salinity effects from increased freshwater

input during the wet summer; it could be a function of

flooding at the site or a combination of both.

Thorhaug et al. (2006) showed that decreased salinity

reduced PRI in halophytic seagrass. However, Iva

frutescens generally only occurs at elevations where

the roots are not subject to prolonged water table

flooding (Bertness et al. 1992). The Bayside site is at

the edge of the marsh at a lower elevation than the

Path site. Mean elevation of the water table at the

Bayside site in 2004 was 0.5 m higher than mean

elevation in drier years (Brinson 2007). Despite the

inconsistency at the Bayside site in 2004, differences

in PRI during 2007 can be explained by variations in

salinity across the island.

In 2007, PRI was lower at the Path site and tissue

chlorides were much higher compared to the Bayside

site. This is due to periodic flooding during extreme

high tides at the Path site and subsequent evaporation

resulting in higher levels of soil salinity (Hayden

et al. 1995). Approximately 15 m from the Path site

lays a hypersaline saltpan (Fig. 1). In comparison, the

Bayside site lies in a tidal area and is flooded daily.

Thus, soil salinity levels are not as likely to build up

due to the constant input of water (Hayden et al.

1995). NDVI values did not differ between years for

I. frutescens and were much lower compared to

M. cerifera. No significant relationship between PRI

and NDVI in either species suggests that factors such

as LAI and leaf angle were not affecting the PRI

signal and that PRI can be used at the landscape level

in these species.

Hyperspectral measurements over homogenous

ecosystems are lacking (Inoue et al. 2008). Barrier

islands are model systems for remote sensing because

of the homogeneous community composition. Our

study demonstrates the usefulness of PRI for remote

detection of salinity stress in M. cerifera thickets.

These thickets are ideal because they form dense,

monotypic canopies with very high LAI, reducing the

confounding effects of canopy structure and hetero-

geneous composition for applying PRI at the

landscape scale (i.e., across the island; Brantley and

Young 2007). For instance, comparison between

2 years of hyperspectral data is likely not confounded

by soil background due to the high LAI of M. cer-

ifera. For I. Frutescens, there may be some

interference of soil background, particularly during

a drought year, where the canopy may not be as full.

Caution should be taken in assessing stress in

I. frutescens using PRI. Knowledge of the system is

important for correct interpretation of PRI values and

the cause of stress. Regardless, PRI successfully

identified areas of stress across the landscape.

Conclusion

Spatial variations in stress were detected on the

barrier island using chlorophyll fluorescence, which

were related to variations in tissue chlorides for both

M. cerifera and I. frutescens. Salinity appeared to be

a factor responsible for patterns of stress across the

landscape, and was detectable using PRI from

airborne hyperspectral imagery. Variations in PRI

remained constant during a wet and dry year for

M. cerifera, while NDVI, CI, and WBI970 were

higher during the wet summer, but varied little across

the island. Thus, PRI was the most useful index for

stress detection in M. cerifera. For I. frutescens, PRI

was related to chloride concentrations during the dry

year, but a different pattern in PRI emerged during a

wet year, suggesting that this index is useful in

detecting stress, but the cause may not always be

obvious. These findings, especially for M. cerifera,

have implications for monitoring the effects of

climate change in coastal systems. Our results

suggest that PRI may be used for early identification

of salt stress that may lead to changes in plant

distributions at the landscape level as a result of

rising sea level and increased storm intensity. In order

to effectively use PRI to detect the effects of climate

change, further investigation of the sources of

salinity, the impact of drought, and associated

interactions on island vegetation is needed.
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Filella I, Peñuelas J (1999) Altitudinal differences in UV

absorbance, UV reflectance and related morphological

traits of Quercus ilex and Rhododendron ferrugineum in

the Mediterranean region. Plant Ecol 145:157–165. doi:

10.1023/A:1009826803540
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